
Splout SQL User Guide

Splout SQL User Guide

iii

Table of Contents
1. Splout SQL installation .. 1

1.1. Download .. 1
1.2. Environmental variables ... 1
1.3. Start up ... 1

2. The basics .. 3
2.1. Table definitions ... 3
2.2. Table types and restrictions .. 3
2.3. Partitioning .. 3
2.4. Partitioning and Querying .. 4

3. Splout SQL Configuration .. 5
3.1. Typical distributed configurations .. 8

4. Splout-Hadoop API .. 10
4.1. Command line tools .. 10

4.1.1. Simple generator .. 10
4.1.2. Generator .. 11
4.1.3. Deployer ... 14

4.2. Hadoop Java API .. 15
4.2.1. Configuring your environment for developing using the "splout-
hadoop" API ... 15
4.2.2. Basic API .. 16

5. Integration with other tools ... 18
5.1. Integration with Hive ... 18
5.2. Integration with Cascading .. 19
5.3. Integration with Pangool .. 20
5.4. Integration with Pig ... 20

6. REST API .. 21
6.1. api/overview ... 22
6.2. api/dnodelist ... 24
6.3. api/tablespaces .. 24
6.4. api/tablespace/{tablespace} ... 24
6.5. api/tablespace/{tablespace}/versions ... 25
6.6. api/dnode/{dnode}/status .. 26
6.7. api/query/{tablespace} .. 26
6.8. api/deploy .. 27
6.9. api/rollback .. 29

7. Tips / Troubleshooting .. 30
7.1. Query speed ... 30
7.2. Deploys failing or taking too long .. 30
7.3. The cluster is inconsistent: there are less DNodes than expected 30
7.4. DNode fails all queries with "Too many open files" exceptions 31

iv

List of Tables
2.1. Correspondence between Pangool types and SQLite types used 3
3.1. Splout server configuration ... 5
3.2. Distributed configurations .. 8
4.1. JSONTablespaceDefinition spec .. 11
4.2. JSONTableDefinition object .. 11
4.3. JSONTableInputDefinition object ... 12
4.4. TextInputSpecs object .. 13
4.5. TablespaceDepSpec object .. 15
6.1. Rest API overview .. 21
6.2. QNodeStatus object ... 22
6.3. DNodeSystemStatus object ... 22
6.4. Tablespace object .. 23
6.5. PartitionMap object ... 23
6.6. PartitionEntry object .. 24
6.7. ReplicationMap object ... 24
6.8. ReplicationEntry object .. 24
6.9. QueryStatus object .. 27
6.10. DeployRequest object ... 28
6.11. DeployInfo object .. 29
6.12. SwitchVersionRequest object ... 29
6.13. StatusMessage object ... 29

1

Chapter 1. Splout SQL installation
1.1. Download

You need to have Java >= 1.6 preinstalled. Download a release of Splout from Maven central
[http://search.maven.org/#browse%7C-1223190492]:

• -mr2 version for Hadoop ⇒ 2.X (YARN)

• -mr1 version for Hadoop < 2.X

• Others (cdh5, etc) for your particular Hadoop distribution

Tip
Other distros: We don’t provide builds for every existing Hadoop distribution and
version. If you need Splout working for your distro, you’ll probably need to recompile
Splout adapting a few dependencies. You can have a look to cdh5 profile at the differ-
ent pom.xml to have a reference.

1.2. Environmental variables
You’ll need to set properly a few environmental variables (i.e. at ~/.bashrc)

For Hadoop >= 2.X (YARN):

• SPLOUT_HADOOP_COMMON_HOME → Pointing to the folder where the hadoop-com-
mon-*.jar can be found

• SPLOUT_HADOOP_HDFS_HOME → Pointing to the folder where where the hadoop-
mapreduce-client-*.jar can be found

• SPLOUT_HADOOP_MAPRED_HOME → Pointing to the folder where the hadoop-com-
mon-*.jar can be found

• SPLOUT_HADOOP_CONF_DIR → Optional: Optionally, specify the Hadoop configura-
tion folder (e.g. /etc/hadoop/conf). Will default to SPLOUT_HADOOP_MAPRED_HOME/
conf

Example of env variables for Cloudera CDH5 using parcels:

export SPLOUT_HADOOP_COMMON_HOME=/opt/cloudera/parcels/CDH/lib/hadoop
export SPLOUT_HADOOP_HDFS_HOME=/opt/cloudera/parcels/CDH/lib/hadoop-hdfs
export SPLOUT_HADOOP_MAPRED_HOME=/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce
export SPLOUT_HADOOP_CONF_DIR=/etc/hadoop/conf

For Hadoop < 2.X:

HADOOP_HOME must be properly defined pointing to your Hadoop installation folder.

1.3. Start up
Launching the server daemons is as easy as:

bin/splout-service.sh qnode start
bin/splout-service.sh dnode start

Tip
The daemons generate a .pid file from where they are launched.

http://search.maven.org/#browse%7C-1223190492
http://search.maven.org/#browse%7C-1223190492

Splout SQL installation

2

Warning
By default, DNode data is written in “dnode-staging” in the same folder where it is
launched. Please read carefully the Configuration section to override this default.

It is possible to have more than one QNode and more than one DNode in a single machine, but
for that it is important to understand the Configuration and modify a few properties, specially
if you launch the services from the same folder.

Logs are stored in logs/ folder from where daemons are launched. Commons-logging [http://
commons.apache.org/logging/] is used for logging.

Splout SQL has been tested to perform correctly under both AMD64 and i386 default
Amazon AMIs. Splout is compatible with the latest Elastic Map Reduce AMI. If you
find any strange problem or issue please contact us or raise a bug in Github [https://github.com/
datasalt/splout-db/issues].

> Back to table of contents [user_guide.html]

http://commons.apache.org/logging/
http://commons.apache.org/logging/
http://commons.apache.org/logging/
https://github.com/datasalt/splout-db/issues
https://github.com/datasalt/splout-db/issues
https://github.com/datasalt/splout-db/issues
user_guide.html
user_guide.html

3

Chapter 2. The basics
Splout Terminology

• Table: A table in Splout can be seen as a standard database table. We will later see how tables
are defined and what are their particularities.

• Tablespace: A tablespace in Splout is a logical union of one or more tables, which are co-
partitioned in the same way.

• Deploy: Splout "deploys" data from a Hadoop-compatible file system such as HDFS or S3,
meaning that DNodes fetch the appropriate database binary files and save them in their local
filesystem. When all DNodes have been coordinated to do so, the version of the database that
they are serving changes atomically to the next one that has been fetched.

• Rollback: Splout can "rollback" previous versions if they are kept in the local storage of all
DNodes. DNodes may keep up to some number of versions for each tablespace, which is a
configurable property (see the Configuration section for that).

2.1. Table definitions
A table schema’s is defined the same way a Pangool Tuple schema [http://pangool.net/user-
guide/schemas.html] is defined. However, the data types are adjusted to match those which are
compatible with SQLite [http://www.sqlite.org/datatype3.html]. The following table shows the
correspondence between a Pangool type and the underlying SQLite type used:

Table 2.1. Correspondence between Pangool types and SQLite types used

Pangool type SQLite type used

INT INTEGER

LONG INTEGER

DOUBLE REAL

FLOAT REAL

STRING TEXT

BOOLEAN INTEGER (0 is false, 1 is true. SQLite
doesn’t support booleans.)

2.2. Table types and restrictions
A table is either partitioned or replicated to all partitions. However, a tablespace should have at
least one partitioned table for the indexer to be able to distribute the data among partitions!

2.3. Partitioning
Partitioning is the basis of Splout and it allows it to balance data before indexing and deploying
it.

The most usual case of partitioning is columnar partitioning, meaning that a table is partitioned
using one or more columns of its schema.

When more than one table is partitioned in the same tablespace, they must be co-partitioned
using the same kind of fields. For example, if a tablespace A contains tables A1, A2 and A3, and
A1 and A2 are partitioned tables and A3 is replicated to all partitions, then if A1 is partitioned
by a pair of (string, int) columns, then A2 should also be partitioned by a pair of (string, int)
columns.

http://pangool.net/userguide/schemas.html
http://pangool.net/userguide/schemas.html
http://pangool.net/userguide/schemas.html
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html

The basics

4

TIP: Note that when a table is partitioned by some columns, Splout just concatenates the
value of those columns as a single string. From that point of view, partitioning is a function
of a row that returns a string. Therefore, it is also possible to partition using arbitrary
functions, for example a javascript function that takes the first two characters of a field. You
can check this in the Advanced API section.

2.4. Partitioning and Querying
Because data is explicitly partitioned, the user must also explicitly provide a partitioning key
when querying Splout. For example, if a dataset has been partitioned by "customer_id", then the
user will provide the appropriated "customer_id" together with the SQL query when querying
Splout through its REST interface.

> Back to table of contents [user_guide.html]

user_guide.html
user_guide.html

5

Chapter 3. Splout SQL
Configuration

Splout uses a dual-configuration method, one file for the defaults and one file for overriding
them. The defaults file is bundled in the JAR and loaded from the classpath. All you need to
do if you want to override a default is specify it in a new “splout.properties” file. This file must
be in SPLOUT_HOME or in any other place from where you will launch the daemons or in
any location of the classpath.

This table shows the property names, the explanation of each property and its default value.
Properties that start with "qnode" affect the configuration of the QNode service. Properties
that start with "dnode" affect the configuration of the DNode service. Properties that start with
"fetcher" affect the configuration of the DNode’s fetcher that is used for deploying new data
from a remote location (HDFS, S3, etc). Properties that start with "hz" affect the behavior of the
coordination system used among the cluster, which is based on Hazelcast [http://hazelcast.com].

Table 3.1. Splout server configuration

qnode.port The port this QNode will run
on.

4412

qnode.port.autoincrement Whether this QNode should
find the next available port in
case "dnode.port" is busy or
fail otherwise.

true

qnode.host The host this QNode will run
on. Note: localhost will be au-
tomatically substituted by the
first valid private IP address
at runtime.

localhost

qnode.versions.per.tablespace The number of successfully
deployed versions that will be
kept in the system (per table-
space).

10

qnode.deploy.seconds.to.check.errorThe number of seconds to
wait before checking each
time if a DNode has failed or
if a timeout has occurred in
the middle of a deploy.

60

dnode.port This DNode’s port. 4422

dnode.port.autoincrement Whether this DNode should
find the next available port in
case "dnode.port" is busy or
fail otherwise.

true

dnode.host This DNode’s host name.
Note: localhost will be auto-
matically substituted by the
first valid private IP address
at runtime.

localhost

dnode.serving.threads How many threads will be al-
located for serving requests in
Thrift’s ThreadPool Server.

64

http://hazelcast.com
http://hazelcast.com

Splout SQL Configuration

6

dnode.data.folder The data folder that will be
used for storing deployed
SQL data stores

./dnode-staging

dnode.pool.cache.seconds The amount of seconds that
the DNode will cache SQL
connection pools. After that
time, it will close them. Be-
cause the DNode may receive
requests for different ver-
sions in the middle of a de-
ployment, we want to expire
connection pools after some
time (to not cache connection
pools that will not be used
anymore).

3600

dnode.pool.cache.n.elements Number of SQL connection
pools that will be cached.
There will be one SQL con-
nection pool for each ta-
blespace, version and parti-
tion that this DNode serves.
So this number must not be
smaller than the different
numbers of tablespace + ver-
sion + partitions.

128

dnode.deploy.timeout.seconds The amount of seconds that
the DNode will wait before
canceling a too-long deploy-
ment. Default is 10 hours.

36000

dnode.max.results.per.query A hard limit on the number
of results per each SQL query
that this DNode may send
back to QNodes. If the lim-
it is hit, an error will be re-
turned.

50000

dnode.handle.test.commands If set, this DNode will listen
for test commands. This prop-
erty is used to activating re-
sponsiveness to some com-
mands that are useful for in-
tegration testing: making a
DNode shutdown, etc.

false

dnode.max.query.time Queries that run for more
than this time will be inter-
rupted. Must be greater than
1000.

15000

dnode.slow.query.abs.limit In milliseconds, queries that
are slower will be logged
with a WARNING and reg-
istered as "slow queries" for
this DNode’s stats.

2500

Splout SQL Configuration

7

dnode.db.connections.per.pool Size of the connection pool to
each partition that this DNode
services.

10

dnode.deploy.parallelism Number of parallel down-
loads allowed when deploy-
ing partitions in a DNode

3

fetcher.s3.access.key If using S3 fetching, specify
here your AWS credentials.

(none)

fetcher.s3.secret.key If using S3 fetching, specify
here your AWS credentials.

(none)

fetcher.temp.dir The local folder that will be
used to download new de-
ployments.

fetcher-tmp

fetcher.download.buffer The size in bytes of the in-
memory buffer used to down-
load files from S3.

1048576

fetcher.hadoop.fs.name If using Hadoop fetching, the
address of the NameNode for
being able to download data
from HDFS.

(none)

hz.persistent.data.folder Folder to be used to per-
sist Hazelcast state informa-
tion needed to persist cur-
rent version information. If
not present, no information is
stored, and restarting a cluster
will cause it to start without
any active tablespace.

hz-data

hz.port Enable this property if you
want your Hazelcast service
to bind to an specific port.
Otherwise the default Hazel-
cast port is used (5701), and
auto-incremented if needed.

(none)

hz.join.method Use this property to config-
ure Hazelcast join in one or
other way. Possible values:
MULTICAST, TCP, AWS

multicast

hz.multicast.group Uncomment and
use this property if
method=MULTICAST and
fine-tuning is needed.

(none)

hz.multicast.port Uncomment and
use this property if
method=MULTICAST and
fine-tuning is needed.

(none)

hz.tcp.cluster Uncomment and use this
property if method=TCP.
Specify a comma-separated
list of host cluster members.

(none)

hz.aws.security.group Uncomment and use this
property if method=AWS and

(none)

Splout SQL Configuration

8

only a certain security group
is to be examined.

hz.aws.key Don’t forget your AWS
credentials if you use
method=AWS.

(none)

hz.aws.secret Don’t forget your AWS
credentials if you use
method=AWS.

(none)

hz.backup.count Modifies the standard backup
count. Affects the replication
factor of distributed maps.

3

hz.disable.wait.when.joining Hazelcast waits 5 seconds be-
fore joining a member. That
is good in production because
it improves the possibilities
of joining several members at
the same time. But very bad
for testing… This property al-
lows you to disable it for test-
ing.

false

hz.oldest.members.leading.countNumber of oldest members
leading operations in the clus-
ter. Sometimes only these
members answer to events, in
order to reduce coordination
traffic.

3

hz.registry.max.time.to.check.registrationMax time, in minutes, to
check if the member is regis-
tered. This check is used to
assure eventual consistency
in rare cases of network par-
titions where replication was
not enough to ensure that no
data is lost.

5

3.1. Typical distributed configurations
It is fairly easy to install Splout in a distributed environment. By default, Splout will use Hazel-
cast [http://hazelcast.com] in Multicast mode for finding members, but it is possible to config-
ure Splout for explicit TCP/IP or Amazon AWS auto-discovery. Following there are some ex-
amples of distributed configurations:

Table 3.2. Distributed configurations

Multicast "hz.join.method=multicast",
Activated by default.

Optionally,
"hz.multicast.group",
"hz.multicast.port" can be
used for fine-tuning the con-
figuration.

TCP/IP "hz.join.method=tcp",
"hz.tcp.cluster=192.168.1.3,192.168.1.4"

Only hosts specified in the
comma-separated list will be
considered for membership.

http://hazelcast.com
http://hazelcast.com
http://hazelcast.com

Splout SQL Configuration

9

AWS "hz.join.method=aws",
"hz.aws.key=KEY",
"hz.aws.secret=SECRET"

Using the provided creden-
tials, active hosts in AWS
will be considered for mem-
bership. The list of hosts
can be narrowed by speci-
fying a security group in "
hz.aws.security.group"

> Back to table of contents [user_guide.html]

user_guide.html
user_guide.html

10

Chapter 4. Splout-Hadoop API
The Splout-Hadoop API contains the libraries and command-line tools needed for indexing and
deploying "Tablespaces" to Splout. Splout uses Pangool [http://pangool.net] jobs for balancing
and creating the needed binary files for being able to serve the provided datasets afterwards.
Tablespaces can be generated according to some partitioning policy specified by the user. The
partitioning is then leveraged by sampling processes to equitatively distribute data among par-
titions.

The output of these processes is usually a set of binary SQLite ".db" files and a partition map
which specifies how queries should be routed to these files. Then, a "deployer" process is used to
distribute these files to the Splout cluster. The "deployer" can also make the same file replicate
several times in order to have fail-over replication.

4.1. Command line tools
The command line tools have been developed to ease the most common use cases. There are
two "generator" tools that are responsible for launching a Hadoop process that will balance and
index the input files, and there is one "deployer" tool that is able to deploy the result of any of
the generators to an alive Splout cluster.

The tools allow to process either textual files (CSV or fixed-width), Cascading binary files,
Hive tables and Pangool Tuple files.

4.1.1. Simple generator
The "Simple generator" allows us to seamlessly index and deploy a single tablespace made up
by a single table, which is a very common use case. By invoking the tool with no parameters
we obtain an explanation of all possible parameters. We will see a few examples of how to
use this tool:

The following line generates the structures needed for deploying a tablespace called "customers"
containing a table named "customers" whose schema is made up by an integer "customer_id"
field, a "name" string and an integer "age". The file is present in input folder "my-input", will
be partitioned in 12 partitions and the binary resultant files will be saved in "my-output". The
partitioning policy is a columnar partitioning based on the column "customer_id".

hadoop jar splout-hadoop-*-hadoop.jar simple-generate -i my-input -o my-output -pby customer_id -p 12 -s "customer_id:int,name:string,age:int" -t customers -tb customers

Tip
The default text format, when not specified, is a tabulated file with no quotes, no es-
caping, no header and no other active advanced parsing option.

The following line generates the structures for the same tablespace, but specifying a custom
CSV format which is comma-separated, escaped by character "\", uses strict quotes (""), has a
header line and may contain a sequence of characters which has to be interpreted as null: "\N".

hadoop jar splout-hadoop-*-hadoop.jar simple-generate --separator , --escape \\ --quotes \"\"\" --nullstring \\N -i my-input -o my-output -pby customer_id -p 12 -s "customer_id:int,name:string,age:int" -t customers -tb customers

Warning
Notice how we needed to escape backslashes when passing them through com-
mand-line parameters.

Strict quotes means that any field which is not quoted will be considered as null. When a field
can’t be parsed to its expected format, it is returned as null. For example, an empty integer field
will be considered null.

Tip
Splout can also use fixed-width text files. For that, you can use the argument "--fixed-
widthfields". When used, you must provide a comma-separated list of numbers. These

http://pangool.net
http://pangool.net

Splout-Hadoop API

11

numbers will be interpreted by pairs, as [beginning, end] inclusive position offsets. For
example: "0,3,5,7" means there are two fields, the first one of 4 characters at offsets
[0, 3] and the second one of 3 characters at offsets [5, 7].

4.1.2. Generator
The "generator" is a simpler command-line which only accepts a JSON file. This JSON file will
contain the specification of the tablespace or tablespaces to generate. In this case, tablespace
specs can be as complex as desired, containing multiple tables if needed. You can also provide
more than one JSON tablespace file to generate them together. Following we will show an
example tablespace JSON file:

{
 "name": "meteo",
 "nPartitions": 16,
 "partitionedTables": [{
 "name": "meteo",
 "schema": "station:string,date:string,metric:string,measure:int",
 "partitionFields": "station",
 "tableInputs": [{
 "inputSpecs": {
 "separatorChar": ","
 },
 "paths": [
 "small.csv"
]
 }]
 }]
}

Following we will show the full schema of the JSON object (JSONTablespaceDefinition) that
can be passed through this file:

Table 4.1. JSONTablespaceDefinition spec

Property Type Explanation

name string The name of the tablespace.

nPartitions integer The number of partitions to
generate.

partitionedTables array of JSONTableDefini-
tion

The partitioned tables of this
tablespace. There must be
one, at least.

replicateAllTables array of JSONTableDefini-
tion

The tables that are replicated
to all the partitions.

This is the spec of the JSONTableDefinition object:

Table 4.2. JSONTableDefinition object

Property Type Explanation

name string The name of the table.

tableInputs array of JSONTableInputDef-
inition

The input locations of this ta-
ble.

schema string The in-line Pangool schema
that defines the structure of

Splout-Hadoop API

12

this table. This property is
optional when using input
types other than TEXT - the
schema will be automatically
discovered from input files.

partitionFields array of string If used, the table will be
partitioned by one or more
columns, otherwise it will be
replicated to all partitions.

indexes array of string List of columns that need to
be indexed after the data is
added to the table. You can
also specify compound index-
es here, comma-separated.

initialStatements array of string Raw SQL commands that
will be performed before the
CREATE TABLE, but just
after some defaults. Rigth
place to put your PRAGMA
statements.

preInsertStatements array of string Raw SQL commands that will
be performed before inserting
all the data to the table, just
after the CREATE TABLE
statements. For example, that
is a good place to alter the ta-
ble schema at your own.

postInsertStatements array of string Raw SQL commands that will
be performed just after insert-
ing all the data, but just be-
fore the CREATE INDEX
statements

finalStatements array of string Raw SQL commands that will
be performed just after all the
other statements, at the end of
the process.

insertionOrderBy string In-line Pangool Order
By clause (in the form
"field1:asc, field2:desc,
…,fieldn:asc") that will be
used for sorting the data be-
fore inserting it in a SQLite
table.

This is the spec of the JSONTableInputDefinition object:

Table 4.3. JSONTableInputDefinition object

Property Type Explanation

paths array of string List of paths that will be used
for creating this table.

inputType InputType Optional property. Type of
input that will be added,

Splout-Hadoop API

13

by default, TEXT. Possible
values are: TUPLE, CAS-
CADING, HIVE.

inputSpecs TextInputSpecs Optional property. When us-
ing inputType = TEXT, spec-
ifies how to parse the text
file.

cascadingColumns string Optional property. When
using inputType = CAS-
CADING, specify here a
comma-separated list of col-
umn names. These names
will be used when parsing the
Cascading binary file.

hiveTableName string Optional property. When us-
ing inputType = HIVE, spec-
ify here the name of the Hive
table to import.

hiveDbName string Optional property. When us-
ing inputType = HIVE, spec-
ify here the name of the Hive
database from where the table
will be imported.

And this is the spec of the TextInputSpecs object:

Table 4.4. TextInputSpecs object

Property Type Explanation

separatorChar character The field separator in the file.
By default, a tabulation.

quotesChar character The quotes character, if any.
By default, none.

escapeChar character The character used for escap-
ing, if any. By default, none.

skipHeader boolean If the CSV has a header, acti-
vate this property for not fail-
ing to parse it.

strictQuotes boolean If quotesChar is specified,
activating this property will
cause all the fields without
quotes to be considered null.
False by default.

nullString string A sequence of characters that,
if found without quotes, will
be considered null. None by
default.

fixedWidthFields array of integers If present, the file will be
parsed as a fixed-width file.
When used, you must pro-
vide a comma-separated list
of numbers. These numbers
will be interpreted by pairs,

Splout-Hadoop API

14

as [beginning, end] inclusive
position offsets. For example:
"0,3,5,7" means there are two
fields, the first one of 4 char-
acters at offsets [0, 3] and the
second one of 3 characters at
offsets [5, 7].

4.1.3. Deployer
The "deployer" tool can be used for deploying any tablespace or set of tablespaces that has been
generated by any of the generators. More than one tablespace may be deployed at the same time,
and Splout will increment the version for all of them in an "all-or-nothing" fashion. For the
common case of deploying only one tablespace, you can use straight command-line parameters:

hadoop jar splout-hadoop-*-hadoop.jar deploy -r 2 -root my-generated-tablespace -tn mytablespace -q http://localhost:4412

The above line will deploy binary files generated in "my-generated-tablespace" folder using
replication 2. The deployed tablespace will be named "mytablespace" and it will be deployed to
the alive Splout cluster using the local QNode address at port 4412. The corresponding expected
file tree for this example would have been the following:

hdfs://.../my-generated-tablespace/
hdfs://.../my-generated-tablespace/partition-map
hdfs://.../my-generated-tablespace/sampled-input
hdfs://.../my-generated-tablespace/store

(This file tree corresponds to the output of a "generator" process with "my-generated-table-
space" as output folder.)

Tip
For failover, it is convenient to replicate your tablespace when deploying it. If ommit-
ted, only one copy of each binary file will be distributed to the cluster, meaning that
if one machine fails there will be a portion of your data that will not be available for
serving. A replication factor of 2 will mean that there will be 2 copies of each file, so
one machine can fail and all the data will still be served. When deploying to a cluster
with less machines than the replication factor specified, it will be automatically down-
graded to the minimum viable one.

For deploying more than one tablespace atomically and with the same replication factor, you
can also use command-line parameters:

hadoop jar splout-hadoop-*-hadoop.jar deploy -r 2 -root my-root-folder -ts mytablespace1 -ts mytablespace2 -ts mytablespace3 -q http://localhost:4412

In this case we will deploy 3 tablespaces at the same time: mytablespace1, mytablespace2 and
mytablespace3. The "root" parameter is a parent folder that contains the specified subfolders,
and the tablespaces will be named after the folder name. So in this case the file tree structure
is the following:

hdfs://.../my-root-folder/mytablespace1/partition-map
hdfs://.../my-root-folder/mytablespace1/sampled-input
hdfs://.../my-root-folder/mytablespace1/store/...
hdfs://.../my-root-folder/mytablespace2/partition-map
hdfs://.../my-root-folder/mytablespace2/sampled-input
hdfs://.../my-root-folder/mytablespace2/store/...
hdfs://.../my-root-folder/mytablespace3/partition-map
hdfs://.../my-root-folder/mytablespace3/sampled-input
hdfs://.../my-root-folder/mytablespace3/store/...

Splout-Hadoop API

15

Last but not least, if we are to atomically deploy a more complex combination of tablespaces,
we can also use a JSON configuration file for that. This file will contain an array of "Table-
spaceDepSpec" objects whose spec is the following:

Table 4.5. TablespaceDepSpec object

Property Type Explanation

sourcePath string The root folder which con-
tains one or more tablespaces
and where this tablespace can
be located.

tablespace string The subfolder in the root
folder that contains the table-
space. It will be used for its
name.

replication integer The replication factor to be
used for this tablespace.

In this case, we can just pass the configuration file like shown below, taking into account that
the file must be present in the local file system:

hadoop jar splout-hadoop-*-hadoop.jar -c my-config.json -q http://localhost:4412

4.2. Hadoop Java API
All the command-line tools use the underlying Java API that we have implemented for Splout.
You can also use this Java API directly in your Java project and you can have access to more
advanced features such as specifying custom partitioning functions, record processing functions
and such.

4.2.1. Configuring your environment for developing
using the "splout-hadoop" API

You can use the splout-hadoop-starter [https://github.com/datasalt/splout-hadoop-starter]
project as a starting point for your project that will use the splout-hadoop API. There are a few
things you have to take into account:

• Splout uses SQLite native libraries: they can be found in splout-resources maven dependency,
and you can use a maven plugin for uncompressing them like in the splout-hadoop-starter
project’s pom [https://github.com/datasalt/splout-hadoop-starter/blob/master/pom.xml]:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-remote-resources-plugin</artifactId>
 <version>1.4</version>
 <configuration>
 <resourceBundles>
 <resourceBundle>com.splout.db:splout-resources:0.2.4</resourceBundle>
 </resourceBundles>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>process</goal>
 </goals>

https://github.com/datasalt/splout-hadoop-starter
https://github.com/datasalt/splout-hadoop-starter
https://github.com/datasalt/splout-hadoop-starter/blob/master/pom.xml
https://github.com/datasalt/splout-hadoop-starter/blob/master/pom.xml
https://github.com/datasalt/splout-hadoop-starter/blob/master/pom.xml

Splout-Hadoop API

16

 </execution>
 </executions>
 </plugin>

• You then need to set your java.library.path in development mode (e.g. Eclipse) to contain the
folder "target/maven-shared-archive-resources". In Eclipse, you can do that by:

Run Configurations -> ... -> JRE -> Installed JREs... -> Click -> Edit ... -> Default VM Arguments: -Djava.library.path=target/maven-shared-archive-resources/

• When working in your own splout-hadoop project in pseudo-distributed or distributed
Hadoop mode, you will need to copy the native libraries to the DistributedCache. The default
Splout command-line tools automatically do that, but in your own project you must do this
for ensuring that the libraries will be loaded in your Hadoop cluster. You can do that by using
the splout-hadoop API before launching the Jobs as follows:

// Only for distributed mode: Add sqlite native libs to DistributedCache
if(!FileSystem.getLocal(hadoopConf).equals(fS)) {
 SploutHadoopConfiguration.addSQLite4JavaNativeLibsToDC(hadoopConf);
}

The default local folder containing the native libraries is "native" but you can use any other.
You will need to copy the libraries in Maven’s "target/maven-shared-archive-resources" to e.g.
"native" in your destination application distribution. You can do that with Maven’s assembly.
You can see an example of that in the splout-hadoop-starter project [https://github.com/datasalt/
splout-hadoop-starter/blob/master/src/main/assembly/assembly.xml].

4.2.2. Basic API
The basic API consists of the following classes:

• TableBuilder [apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html]: a builder
used to obtain a Table instance. Table instances can be used in TablespaceBuilder for con-
structing a tablespace specification.

• TablespaceBuilder [apidocs/splout-hadoop/com/splout/db/hadoop/
TablespaceBuilder.html]: a builder used to obtain a TablespaceSpec instance.

• TablespaceGenerator [apidocs/splout-hadoop/com/splout/db/hadoop/
TablespaceGenerator.html]: It can be used to generate the binary files according to a Table-
spaceSpec instance.

• StoreDeployerTool [apidocs/splout-hadoop/com/splout/db/hadoop/
StoreDeployerTool.html]: It can be used to deploy the files generated by the TablespaceGen-
erator [apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html] to an alive
Splout cluster. It will accept TablespaceDepSpec instances, which have been documented in
the previous sections.

The javadoc of each of these classes should guide you well into us-
ing them in your custom Java project. In addition, you can check this
example [https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/
splout/db/examples/PageCountsExample.java] which uses the Wikipedia Pagecounts data
[http://dom.as/2007/12/10/wikipedia-page-counters/] for seeing a practical example on how to
use this programmatic API.

4.2.2.1. Custom partitioning
Aside of column-based partitioning, an arbitrary partitioning function can be provided in
the form of a Javascript function. This function ca be passed to TableBuilder’s partitionBy-
JavaScript() method.

https://github.com/datasalt/splout-hadoop-starter/blob/master/src/main/assembly/assembly.xml
https://github.com/datasalt/splout-hadoop-starter/blob/master/src/main/assembly/assembly.xml
https://github.com/datasalt/splout-hadoop-starter/blob/master/src/main/assembly/assembly.xml
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsExample.java
https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsExample.java
https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsExample.java
https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsExample.java
http://dom.as/2007/12/10/wikipedia-page-counters/
http://dom.as/2007/12/10/wikipedia-page-counters/

Splout-Hadoop API

17

4.2.2.2. RecordProcessor
If you want to have more control on the generation process, you can implement your own
RecordProcessor which will receive Tuples as they have been parsed by the input files and
should emit Tuples as you want them to be indexed in your SQL tables. For example, you may
choose to narrow your input Tuple and emit a subset of it, modify some field by decoding its
content, and so on. The RecordProcessor may also act as a filter. If "null" is returned, the input
Tuple would have been filtered out from the generation process.

The pagecounts example RecordProcessor [https://github.com/datasalt/splout-db/blob/mas-
ter/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsRecordProcessor.java] is
a good example.

> Back to table of contents [user_guide.html]

https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsRecordProcessor.java
https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsRecordProcessor.java
https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/examples/PageCountsRecordProcessor.java
user_guide.html
user_guide.html

18

Chapter 5. Integration with other
tools

It is possible to use the splout-hadoop API to import data directly from Hive, Cascading, Pig
or Pangool. We will see an overview of such functionality in this section, together with some
practical examples.

5.1. Integration with Hive
Note: For using Hive with Splout, it is recommended to add Hive conf/ and lib/ folder to the
HADOOP_CLASSPATH environment variable:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/conf:$HIVE_HOME/lib/*

In this way, Splout will be able to locate the appropriate Hive metastore and sample the Schema
of Hive tables implicitly.

For importing tables using the "simple-generate" tool we can use arguments "-hdb" and "-htn"
for indicating the Hive database and the Hive table we want to import. We will need to specify
that the input type is "HIVE" through "-it" property and add the rest of parameters needed
(number of partitions, partitioning columns, output folder, table name and tablespace name).
Note how we don’t need to specify input paths anymore as the input is read directly from Hive.

hadoop jar splout-hadoop-*-hadoop.jar simple-generate -it HIVE -hdb default -htn mentions -o out-hive-simple -pby mentioner -p 2 -t mentions_of_me -tb hive_simple_example

Or we can use the "generate" tool. For that we can create a JSON tablespace descriptor like the
example one. We specify the input type and the Hive database and table names. Note how we
don’t need to specify input paths.

{
 "name": "hive_simple_example",
 "nPartitions": 2,
 "partitionedTables": [{
 "name": "mentions_of_me",
 "partitionFields": "mentioned",
 "tableInputs": [{
 "inputType": "HIVE",
 "hiveTableName": "mentions",
 "hiveDbName": "default"
 }]
 }]
}

We can then execute the JSON descriptor tablespace generation with the "generate" tool as
usual:

hadoop jar splout-*-hadoop.jar generate -tf file:///`pwd`/hive_simple_example.json -o out-hive-simple

And finally, with either methods, we can deploy the generated database as usual:

hadoop jar splout-hadoop-*-hadoop.jar deploy -root out-hive-simple -ts hive_simple_example -q http://localhost:4412

When using the Java API, we can add Hive table inputs with methods addHiveTable() from
TableBuilder [apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html].

Keep in mind that if you are using Hive with default embedded Derby database you can’t import
Hive tables while you have another session opened in Hive at the same time, as the import
process will try to connect to it too.

apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html

Integration with other tools

19

Note: When using advanced Hive features such as the OCRInputFormat, it is also needed to
add the hive-exec JAR via "-libjars", so that Mappers and Reducers can understand this native
format:

hadoop jar splout-*-hadoop.jar generate -libjars $HIVE_HOME/lib/hive-exec-0.11.0.jar <rest-of-commands-here>

5.2. Integration with Cascading
Splout SQL can import binary Cascading files directly without needing to convert them to text.
For that we just need to specify the input path where the output of the Cascading process is,
and a list of comma-separated column names. The type of each column will be automatically
discovered from the binary Cascading file.

For importing a Cascading table using the "simple-generate" tool we can use argument "-cc" for
indicating the comma-separated column names, together with CASCADING in "-it" argument,
and the rest of arguments as usual. See the following example:

hadoop jar splout-hadoop-*-hadoop.jar simple-generate -i out-clogs-analytics -it CASCADING -cc "day,month,year,user,category,count" -o out-cascading-simple -pby user -p 2 -t analytics -tb cascading_simple_example

Or we can use the "generate" tool. For that we can write a JSON descriptor as follows:

{
 "name": "cascading_simple_example",
 "nPartitions": 2,
 "partitionedTables": [{
 "name": "analytics",
 "partitionFields": "user",
 "tableInputs": [{
 "inputType": "CASCADING",
 "cascadingColumns": "day,month,year,user,category,count",
 "paths": ["out-clogs-analytics"]
 }]
 }]
}

We can then execute the JSON descriptor tablespace generation with the "generate" tool as
usual:

hadoop jar splout-*-hadoop.jar generate -tf file:///`pwd`/cascading_simple_example.json -o out-cascading-simple

And finally, with either methods, we can then deploy the generated database as usual:

hadoop jar splout-hadoop-*-hadoop.jar deploy -root out-cascading-simple -ts cascading_simple_example -q http://localhost:4412

When using the Java API, we can add Cascading table inputs with meth-
ods addCascadingTable() from TableBuilder [apidocs/splout-hadoop/com/splout/db/hadoop/
TableBuilder.html]. Keep in mind that in order to have this functionality in your Java project
you will need to explicitly import the appropriated Maven dependency:

<dependency>
 <groupId>cascading</groupId>
 <artifactId>cascading-hadoop</artifactId>
 <version>2.2.0-wip-15</version>
</dependency>

Which you can get from Conjar’s Maven repo:

<repositories>
 <repository>
 <id>conjars.org</id>

apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html

Integration with other tools

20

 <url>http://conjars.org/repo</url>
 </repository>
 ...

5.3. Integration with Pangool
Binary Pangool Tuple files can be imported directly using inputType "TUPLE". Both the types
and the column names will be read from those files so we need to do nothing special besides
indicating the inputType and the input path.

5.4. Integration with Pig
We can import data from Pig by storing it as Pangool Tuple files. For that we need to obtain the
pangool-core JAR. We can download it from Maven Central [http://search.maven.org/#search
%7Cga%7C1%7Cpangool] if we don’t have it somewhere else. We then register the JAR in
our Pig sessiona s follows:

REGISTER /.../path-to-pangool-core-jar/.../pangool-core-0.60.2.jar;

And we can save any output as:

STORE cntd INTO 'pig-wordcount-result' USING com.datasalt.pangool.pig.PangoolStoreFunc('pigwordcount', 'word', 'count');

Note how the first argument to the StoreFunc is the table name, and the rest are column names.
The following example executes a simple word-count task in Pig and saves the output as a
binary Pangool Tuple file. We will use an input file called mary with the following content:

Mary had a little lamb
its fleece was white as snow
and everywhere that Mary went
the lamb was sure to go.

This is the script code:

REGISTER /.../path-to-pangool-core-jar/.../pangool-core-0.60.2.jar;
a = LOAD 'mary' as (line);
words = FOREACH a GENERATE flatten(TOKENIZE(line)) AS word;
grpd = GROUP words BY word;
cntd = FOREACH grpd GENERATE group, COUNT(words);
STORE cntd INTO 'pig-wordcount-result' USING com.datasalt.pangool.pig.PangoolStoreFunc('pigwordcount', 'word', 'count');

We can then import the resulting binary file as a normal Pangool Tuple file, for example with
the "simple-generate" tool:

hadoop jar splout-hadoop-*-hadoop.jar simple-generate -i pig-wordcount-result -it TUPLE -o out-pig-simple -pby word -p 2 -t wordcount -tb pig_simple_example
hadoop jar splout-hadoop-*-hadoop.jar deploy -root out-pig-simple -ts pig_simple_example -q http://localhost:4412

http://search.maven.org/#search%7Cga%7C1%7Cpangool
http://search.maven.org/#search%7Cga%7C1%7Cpangool
http://search.maven.org/#search%7Cga%7C1%7Cpangool

21

Chapter 6. REST API
You can interact with the server through the Java client [apidocs/splout-javaclient/com/splout/
db/common/SploutClient.html] or directly through the REST interface. These are the basic
methods of the REST interface:

Table 6.1. Rest API overview

Method type Path Parameters Explanation Example

GET api/overview (none) Returns a QN-
odeStatus ob-
ject with the
overview of the
cluster.

http://local-
host:4412/api/
overview

GET api/dnodelist (none) Returns the list
of DNodes in the
cluster.

http://local-
host:4412/api/
dnodelist

GET api/tablespaces (none) Returns the list
of active table-
spaces in the
cluster.

http://local-
host:4412/api/ta-
blespaces

GET api/table-
space/{table-
space}

(none) Returns a Table-
space object with
the info for this
particular table-
space.

http://local-
host:4412/api/ta-
blespace/myta-
blespace

GET api/table-
space/{table-
space}/versions

(none) Returns a
Map<Long, Ta-
blespace> object
with all the avail-
able versions for
this tablespace.

http://local-
host:4412/api/ta-
blespace/myta-
blespace/versions

GET api/dnode/
{dnode}/status

(none) Returns a
DNodeSystemS-
tatus object for
the specified
dnode.

http://local-
host:4412/api/
dnode/local-
host:4422/status

GET api/query/{table-
space}

key, sql, [call-
back]

Performs a SQL
query to the
specified table-
space and returns
a QueryStatus
object.

http://local-
host:4412/api/
mytable-
space?key=K1&sql=SELECT
%201;

POST api/deploy List<DeployRequest>Performs a de-
ploy according
to the associated
DeployRequest
objects passed as
body for the re-
quest and returns
a DeployInfo ob-
ject.

apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
http://localhost:4412/api/overview
http://localhost:4412/api/overview
http://localhost:4412/api/overview
http://localhost:4412/api/dnodelist
http://localhost:4412/api/dnodelist
http://localhost:4412/api/dnodelist
http://localhost:4412/api/tablespaces
http://localhost:4412/api/tablespaces
http://localhost:4412/api/tablespaces
http://localhost:4412/api/tablespace/mytablespace
http://localhost:4412/api/tablespace/mytablespace
http://localhost:4412/api/tablespace/mytablespace
http://localhost:4412/api/tablespace/mytablespace
http://localhost:4412/api/tablespace/mytablespace/versions
http://localhost:4412/api/tablespace/mytablespace/versions
http://localhost:4412/api/tablespace/mytablespace/versions
http://localhost:4412/api/tablespace/mytablespace/versions
http://localhost:4412/api/dnode/localhost:4422/status
http://localhost:4412/api/dnode/localhost:4422/status
http://localhost:4412/api/dnode/localhost:4422/status
http://localhost:4412/api/dnode/localhost:4422/status
http://localhost:4412/api/mytablespace?key=K1&sql=SELECT%201
http://localhost:4412/api/mytablespace?key=K1&sql=SELECT%201
http://localhost:4412/api/mytablespace?key=K1&sql=SELECT%201
http://localhost:4412/api/mytablespace?key=K1&sql=SELECT%201
http://localhost:4412/api/mytablespace?key=K1&sql=SELECT%201

REST API

22

POST api/rollback List<SwitchVersionRequest>Performs a roll-
back according
to the associated
DeployRequest
objects passed as
body for the re-
quest and returns
a StatusMessage
object.

Following we will see each method with a little more detail:

6.1. api/overview
Use this method for obtaining an overview on the cluster status. Returns a QNodeStatus status
object. Example response:

{
 dNodes: {
 192.168.1.3:4422: {
 average: "NaN",
 files: [],
 freeSpaceInDisk: 289065160,
 upSince: 1354124108706,
 nQueries: 0,
 failedQueries: 0,
 slowQueries: 0,
 systemStatus: "UP",
 deployInProgress: false,
 occupiedSpaceInDisk: 0,
 lastExceptionTime: -1
 }
 },
 tablespaceMap: { },
 clusterSize: 2
}

Table 6.2. QNodeStatus object

Property Type Explanation

dNodes Map<String, DNodeSystemS-
tatus>

Alive DNodes in cluster and
their associated information.

tablespaceMap Map<String, Tablespace> Current tablespaces being
served by the cluster and their
associated information.

clusterSize integer Number of services (QNodes
+ DNodes) in the cluster.

Table 6.3. DNodeSystemStatus object

Property Type Explanation

systemStatus string "UP" if everything is fine.
Otherwise "Last exception"
together with a short Excep-
tion message will appear in-
dicating that some Java Ex-

REST API

23

ception was thrown by the
DNode.

lastExceptionTime long The time when the last Java
Exception was thrown corre-
sponding to the sytemStatus
caption.

deployInProgress boolean Whether the DNode is fetch-
ing data for a deployment or
not.

upSince long The time when this DNode
was started.

nQueries int The number of queries that
this DNode has served.

failedQueries int The number of queries that
this DNode has failed to
serve.

slowQueries double The number of queries con-
sidered to be "slow". Slow
queries are configured by
configuration property
"dnode.slow.query.abs.limit".

average double The average query time for
this DNode.

occupiedSpaceInDisk long The number of bytes occu-
pied by the data that this
DNode holds.

freeSpaceInDisk long The free disk space in the
disk that this DNode is using.

files List<String> The list of files for this
DNode, and the size of each
file in parenthesis.

Table 6.4. Tablespace object

Property Type Explanation

partitionMap PartitionMap The partition map that is be-
ing used to route queries for
this tablespace.

replicationMap ReplicationMap The replication map that is
being used for failover for
this tablespace.

version long The version number of this
tablespace.

creationDate long The time when this tablespace
was deployed.

Table 6.5. PartitionMap object

Property Type Explanation

partitionEntries List<PartitionEntry> The list of partition entries
with (min, max) ranges for
this tablespace.

REST API

24

Table 6.6. PartitionEntry object

Property Type Explanation

min string If a key falls between [min,
max) it will be routed to this
shard. Min is inclusive.

max string If a key falls between [min,
max) it will be routed to this
shard. Max is not inclusive.

shard int If a key falls between [min,
max) it will be routed to this
shard.

Table 6.7. ReplicationMap object

Property Type Explanation

replicationEntries List<ReplicationEntry> The list of replication entries
with list of dnodes for this ta-
blespace.

Table 6.8. ReplicationEntry object

Property Type Explanation

shard int This shard can be served by
any dnode in the "nodes" list.

nodes list<string> This shard can be served by
any dnode in the "nodes" list.

6.2. api/dnodelist
Use this method for getting the list of alive DNodes. Returns a list of strings. Example response:

[
 "192.168.1.3:4422",
 "192.168.1.4:4422",
]

6.3. api/tablespaces
Use this method for getting the list of tablespaces being served in the cluster. Returns a list of
strings. Example reponse:

[
 "pagecounts"
]

6.4. api/tablespace/{tablespace}
Use this method for getting the associated information of a tablespace being served by the
cluster. Returns a Tablespace object. Example response:

{
 partitionMap: {
 partitionEntries: [
 {

REST API

25

 shard: 0,
 max: "Sp",
 min: null
 },
 {
 shard: 1,
 max: null,
 min: "Sp"
 }
]
 },
 version: 5649092059,
 replicationMap: {
 replicationEntries: [
 {
 shard: 0,
 nodes: [
 "192.168.1.3:4422"
]
 },
 {
 shard: 1,
 nodes: [
 "192.168.1.3:4422"
]
 }
]
 },
 creationDate: 1354124763853
}

6.5. api/tablespace/{tablespace}/versions
Returns all available versions for the specified tablespace, including the one which may be
being served at the moment by the cluster. Returns a Map<Long, Table 6.4, “Tablespace ob-
ject” [23]>. For every version in the key of the map, returns the associated Tablespace ob-
ject information. Example response:

{
 5649092059:
 partitionMap: {
 partitionEntries: [
 {
 shard: 0,
 max: "Sp",
 min: null
 },
 {
 shard: 1,
 max: null,
 min: "Sp"
 }
]
 },
 version: 5649092059,
 replicationMap: {
 replicationEntries: [

REST API

26

 {
 shard: 0,
 nodes: [
 "192.168.1.3:4422"
]
 },
 {
 shard: 1,
 nodes: [
 "192.168.1.3:4422"
]
 }
]
 },
 creationDate: 1354124763853
 }
}

6.6. api/dnode/{dnode}/status
Returns a DNodeSystemStatus object filled with the detailed information of the specified
DNode. Example response:

{
 average: "NaN",
 files: [
 "/var/opt/splout/./dnode-staging (13512 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts (13512 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059 (13512 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059/0 (3072 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059/0.meta (100 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059/0/0.db (3072 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059/1 (10240 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059/1.meta (100 bytes)",
 "/var/opt/splout/./dnode-staging/pagecounts/5649092059/1/1.db (10240 bytes)"
],
 freeSpaceInDisk: 289059948,
 upSince: 1354124108706,
 nQueries: 0,
 failedQueries: 0,
 slowQueries: 0,
 systemStatus: "UP",
 deployInProgress: false,
 occupiedSpaceInDisk: 13512,
 lastExceptionTime: -1
}

6.7. api/query/{tablespace}
Perform a SQL query and get a JSON result back. Returns a QueryStatus object with
some metadata about the query execution. Example response for key=Up, sql=SELECT *
FROM pagecounts LIMIT 1 and tablespace pagecounts (http://localhost:4412/api/query/page-
counts?key=Up&sql=SELECT%20*%20FROM%20pagecounts%20LIMIT%201;):

{
 "millis": 135,
 "error":null,

http://localhost:4412/api/query/pagecounts?key=Up&sql=SELECT%20*%20FROM%20pagecounts%20LIMIT%201
http://localhost:4412/api/query/pagecounts?key=Up&sql=SELECT%20*%20FROM%20pagecounts%20LIMIT%201

REST API

27

 "result": [
 {
 "pagename": "zh:####",
 "hour": "23",
 "pageviews": 1,
 "date": "20090430"
 }
],
 "shard": 1
}

Table 6.9. QueryStatus object

Property Type Explanation

result list<Object> The query result from the
database, which has been
JSONified. If there was an er-
ror, it will be empty.

shard int The shard that the query was
routed to.

millis long The time the query took to be
executed.

error string The error message if there
was any.

6.8. api/deploy
Warning
You won’t usually need to perform a deploy manually using this REST method.
However, you can refer to this documentation in case you need to do some-
thing very specific. For doing deploys you will usually use the "deployer" com-
mand-line tool or the StoreDeployerTool [apidocs/splout-hadoop/com/splout/db/
hadoop/StoreDeployerTool.html] Java class.

By providing a list of DeployRequest objects we can perform a deploy through this POST
method. We need to specify a tablespace name, an URI from where binary objects must be
fetched, a PartitionMap and a ReplicationMap and optionally a list of SQL statements that will
be executed each time a connection is made to the database.

Example post body:

[
 {
 "tablespace": "pagecounts",
 "data_uri": "file:/opt/splout-db/splout-hadoop/out-pagecounts/store",
 "partitionMap": [
 {
 "min": null,
 "max": "Sp",
 "shard":0
 },
 {
 "min": "Sp",
 "max": null,
 "shard":1
 }

apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html

REST API

28

],
 "replicationMap": [
 {
 "shard": 0,
 "nodes": [
 "192.168.1.3:4422"
]
 },
 {
 "shard": 1,
 "nodes": ["192.168.1.3:4422"]
 }
],
 "initStatements": [
 "pragma case_sensitive_like=true;"
]
 }
]

Table 6.10. DeployRequest object

Property Type Explanation

tablespace string The tablespace name. It will
be used as identifier after be-
ing deployed if it doesn’t ex-
ist. If it exists, a new version
will be promoted for it.

data_uri string The absolute URI where the
binary files can be found.

initStatements list<string> A list of SQL statements that
will be executed everytime
a connection is made to the
database files. Useful for us-
ing custom SQLite PRAG-
MAs.

partitionMap list<Table 6.6, “PartitionEn-
try object” [24]>

The Partition map to be used
for routing queries from this
tablespace.

replicationMap list<Table 6.8, “Replicatio-
nEntry object” [24]>

The Replication map to be
used for failover for this ta-
blespace.

Tip
Java users can use SploutClient [apidocs/splout-javaclient/com/splout/db/com-
mon/SploutClient.html] or higher-level StoreDeployerTool [apidocs/splout-hadoop/
com/splout/db/hadoop/StoreDeployerTool.html] (which uses apidocs/splout-java-
client/com/splout/db/common/SploutClient.html[SploutClient] underneath) instead of
the raw REST API for doing deploys.

Tip
Partition maps are automatically generated by sampling methods in the generator tools
and saved in the output folder that was used for the tool. The tools use the Tablespace-
Generator [apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html]
Java class underneath.

apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/StoreDeployerTool.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceGenerator.html

REST API

29

Tip
Typical replication maps can be built easily with the Java API
methods ReplicationMap.roundRobinMap() [apidocs/splout-commons/com/splout/
db/common/ReplicationMap.html] and ReplicationMap.oneToOneMap() [api-
docs/splout-commons/com/splout/db/common/ReplicationMap.html].

The deploy is an asynchronous operation coordinated by the cluster members. A deploy request
returns inmediately with a Table 6.11, “DeployInfo object” [29] object indicating whether
it could be started or whether there was some error trying to start it:

Table 6.11. DeployInfo object

Property Type Explanation

error string If there is any error starting
the deploy.

string startedAt A timestamp indicating the
time when this deploy started.

version long The version number that the
tablespace will have when the
deploy is promoted.

6.9. api/rollback
By providing a list of SwitchVersionRequest objects we can perform a rollback through this
POST method. We just need to specify the tablespace name (which must be being served by
the cluster at the moment of the rollback) and the version we want to set it to.

Table 6.12. SwitchVersionRequest object

Property Type Explanation

tablespace string The tablespace name, used as
identifier.

version long The version to rollback to. It
must be available in the clus-
ter.

Tip
Java users can use SploutClient [apidocs/splout-javaclient/com/splout/db/com-
mon/SploutClient.html] instead of the raw REST API for doing rollbacks.

Rollback is a synchronous operation and the return type is Table 6.13, “StatusMessage ob-
ject” [29]:

Table 6.13. StatusMessage object

Property Type Explanation

status string "Done" if it could be done,
otherwise an error will be
printed here.

> Back to table of contents [user_guide.html]

apidocs/splout-commons/com/splout/db/common/ReplicationMap.html
apidocs/splout-commons/com/splout/db/common/ReplicationMap.html
apidocs/splout-commons/com/splout/db/common/ReplicationMap.html
apidocs/splout-commons/com/splout/db/common/ReplicationMap.html
apidocs/splout-commons/com/splout/db/common/ReplicationMap.html
apidocs/splout-commons/com/splout/db/common/ReplicationMap.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
apidocs/splout-javaclient/com/splout/db/common/SploutClient.html
user_guide.html
user_guide.html

30

Chapter 7. Tips / Troubleshooting
In this section we will take a look to the common problems or tips that one has to take into
account when using Splout:

7.1. Query speed
There are a wide variety of reasons why queries may or may not perform well. It is important
to understand that each query is executed in a SQLite connection of a binary SQLite file. When
troubleshooting query performance, it is advisable to take a look to the SQLite documentation
[http://www.sqlite.org/] and in addition check things like:

• PRAGMA index_list(table) - to check if we have created the appropriated indexes or not.

• EXPLAIN QUERY PLAN (query) - to show if SQLite is using the expected indexes or not.

• PRAGMA case_sensitive_like - when doing LIKE queries, SQLite will use an index only if
this pragma is set to true and the index was created using standard collation, or if this pragma
is set to false and the index was created using COLLATE NOCASE.

• ANALYZE - You can run ANALYZE as finalStatement on partitions generation. It could
help when planning query execution.

Remember that you can fine-tune your data indexing process with initialStatements,
preInsertStatements, postInsertStatements and finalStatements (see Table 4.2, “JSONTableDe-
finition object” [11]) and initStatements (see Table 6.10, “DeployRequest object” [28]).
All these features are available as part of the standard Java API of TableBuilder [api-
docs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html] and TablespaceBuilder [api-
docs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html]. Use them for adding cus-
tom PRAGMA or custom CREATE INDEX commands if needed.

It is also very important to keep in mind that colocating data in disk is crucial for query speed.
For example, if your query impacts 1000 records and these records need to be loaded from
the main table, if they are not colocated in disk and the database doesn’t fit in memory, it
would mean that the server has to peform 1000 potential seeks. You can control the data
colocation policy with "insertionOrderBy" as explained in Table 4.2, “JSONTableDefinition
object” [11], which is also available in TableBuilder [apidocs/splout-hadoop/com/splout/db/
hadoop/TableBuilder.html].

As an example, we have used data colocation techniques within Splout SQL to obtain < 50ms
average query time with 10 threads on dynamic GROUP BY’s that hit an average of 2000
records each in a multi-gigabyte database that exceeded available RAM in orders of magnitude
in a m1.small EC2 machine.

7.2. Deploys failing or taking too long
Because deployments are asynchronous operations, it can be tricky to know if they have suc-
ceeded or not. You can monitor a deployment using the information returned by the API (de-
ployInProgress flags).

A deploy may fail if some of the DNodes fail, if a timeout is reached (see Configuration) or
if the leader QNode dies. The default timeout is 10 hours, so it shouldn’t be hit under normal
circumstances.

7.3. The cluster is inconsistent: there are
less DNodes than expected

In big networks in can take some time for Hazelcast to negotiate the membership. It can be a
matter of minutes.

http://www.sqlite.org/
http://www.sqlite.org/
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TablespaceBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html
apidocs/splout-hadoop/com/splout/db/hadoop/TableBuilder.html

Tips / Troubleshooting

31

7.4. DNode fails all queries with "Too many
open files" exceptions

You might have to tune your open files limit as Splout is opening one connection to each par-
tition file it has for every serving thread. So if you have 64 serving threads and 20 partitions
to serve, this means up to 1280 opened files which is more than the default in some machines
(1024). You can check and change your limits: http://www.cyberciti.biz/faq/linux-increase-the-
maximum-number-of-open-files/

http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/
http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/

